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Abstract—Pathfinding is the search of an optimal path between
two points on a graph. This paper investigates the performance
of pathfinding algorithms in 3D voxel environments, focusing on
optimizing paths for both time and distance. Utilizing computer
simulations in Unreal Engine 5, four algorithms—A*, Dijkstra’s
algorithm, Dijkstra’s algorithm with speed consideration, and a
novel adaptation referred to as Time*—are tested across various
environment sizes. Results indicate that while Time* exhibits a
longer execution time than A*, it significantly outperforms all
other algorithms in traversal time optimization. Despite slightly
longer path lengths, Time* can compute more efficient paths.
Statistical analysis of the results suggests consistent performance
of Time* across trials. Implications highlight the significance of
speed-based pathfinding algorithms in practical applications and
suggest further research into optimizing algorithms for variable
speed environments.

Index Terms—Pathfinding, Dijkstra’s Algorithm, A*, Voxel

I. INTRODUCTION

In pathfinding scenarios, the world is often represented as a
2-dimensional graph, in which an agent traverses across nodes
connected by edges, known as graph theory [1]. Common
pathfinding algorithms find the best path between two nodes
by optimizing the distances between nodes (represented by
weights on each edge between the nodes) [10]. Previous stud-
ies have attempted to address various aspects of pathfinding
such as environmental representation, computational optimiza-
tion, and heuristic approaches. When evaluating the efficacy of
algorithms, three factors are commonly considered, i.e., path
cost, memory consumption, and execution time [13].

Many studies have used the graph theory model to represent
the world but have also considered the voxel model, which
discretizes 3D space into cubic ”voxels”, of which each one’s
center acts as the node’s location in the graph. This model
allows for a more dynamic representation of 3D space and a
reduction from a more complex environment to a much simpler
one, allowing for expanded processing capabilities.

In this study, we investigate a pathfinding problem concern-
ing traversal time, where the speed across nodes is subject to
dynamic changes over time. We aim to optimize traversal time
due to its application in real-world scenarios and its relevance
to speed. Due to the nondeterministic nature of this problem,
there does not exist a polynomial-time optimal solution to
solve such a problem. Thus, a heuristic approach is required
to create an effective solution in polynomial time.

We propose a heuristic approach to solve this problem by
considering the Euclidean distance from the goal and the mean
randomly determined speed from the goal. In this study, we
will explore the efficacy of traversal time as a metric and a
heuristic cost function in 3D voxel space.

The contributions of our work are summarized as follows:
• A rigorous formulation of a constrained pathfinding prob-

lem with time-varying speeds;
• Design of a pathfinding algorithm adapted from A* in

3D voxel space; and
• Using 3D voxel space, similar to real-world topology, to

evaluate algorithms.
II. RELATED WORK

We conduct a brief survey of work in various environments.
A. Advancement of Pathfinding

The origin of most modern pathfinding algorithms comes
from Dijkstra’s algorithm where all nodes in a graph are
checked to calculate the distance between them to find the
path of minimum distance [6]. One famous use of Dijkstra’s
algorithm is in NASA’s Perseverance rover, which used the
Enhanced Navigation (ENav) library. Their variation of Di-
jkstra’s algorithm is called the Approximate Clearance Eval-
uation (ACE) algorithm. The algorithm develops a costmap
by analyzing the terrain, where each cell in the costmap has
a cost of the weighted sum of tilt, roughness, and minimum
time needed to traverse a cell [2]. A common weakness of
Dijkstra’s algorithm is that it cannot handle negative weights
on edges. This led to the A* (“A-Star”) algorithm, one of
the most popular algorithms that handles this weakness, while
improving the actual pathfinding performance. It accomplishes
this by using a heuristic to estimate the cost from the start to
the end of a path [23]. A* has been one of the more pop-
ular adaptations of Dijkstra’s algorithm, used by researchers
worldwide with the advantage of analyzing its surroundings
before committing to a path. It accomplishes this by using a
heuristic function to calculate each node’s cost, allowing the
agent to rank the nodes around it [10]:

f(n) = g(n) + h(n), (1)

where function g denotes the total cost between the current
node n and the starting node, function h denotes the total cost



between the current node n and the ending node, and function
f denotes the total cost of node n. f(n) is calculated for each
possible node around n and then used to rank them to find
the lowest cost path [10]. This allows for much quicker and
more accurate pathfinding as there is less backtracking when
calculating the distance between two nodes [8].

The A* algorithm can also be adapted for multiple envi-
ronments. For example, in [11], A* is modified for a sphere-
shaped environment by creating sphere-shaped borders around
obstacles to standardize their pathfinding environment. They
also modified the algorithm to handle dynamic changes in
environments, such as new obstacles. The most common use
of A* and its derivatives is in modern computer games. In the
video game Age of Empires, where military units move on a
256 × 256 grid, A* can be used to determine the movement of
military units. There are various avenues by which A* can be
expanded upon: the environment representation, the heuristic
function, the use of memory, and the data structure by which
the information about the nodes is stored.

B. Voxel-Based Environments

Voxel-based environments operate on the voxel model, one
of the five fundamental ways of describing 3D environments
as described by [16]. Each voxel is a cube of uniform size.
An advantage of the voxel model is its simplicity as the envi-
ronment can be treated as an image with an extra dimension.
In images, each unit square is called a pixel, whereas in these
environments, each unit cube is called a voxel. As the number
of voxels increases, so does the quality of the environment [9].
In [3], a virtual environment of a 12 × 12 array is considered
with the perimeter being “solid” and the inner portion having
a random assortment of “solid” cells, with all other cells
being considered “empty”. This array would be translated into
a 3D maze, in which the agent would use vision input to
create a path through the maze, with each of these cells being
considered a voxel, as shown in Fig. 1.

Fig. 1. “Movement of the animat
through its environment after training.”
as illustrated in [3].

A major use of
pathfinding in the real
world is in Unmanned
Autonomous Vehicles
(UAVs). “Crusher”, an
unmanned ground vehicle
in [4], uses laser detection
and ranging (LADAR)
analysis to analyze its
surroundings and build
a voxel map. Another
application of the voxel
model is quickly recording
objects in an environment.
For example, [22] used the
voxel model to identify
vegetation in urban environments and record the state of said
vegetation. With extensive research on this model, various
avenues surface that future studies can expand upon: map
representations, path techniques, and grid techniques [5].

C. Problem and Gap
There is an empirical gap in the prior research due to a lack

of rigorous research in navigation in 3D voxel environments.
Previous research has addressed several aspects of navigation,
such as spherical environments [11], small 3D mazes [3], and
real-world terrain [4] [2]. Further research has been conducted
on video games, such as object recognition in arcade games
[15], and 3D voxel-based games [17]. Extending research
into 3D voxel-based environments would prove useful as the
variability and simplicity of such an environment would allow
for more complex model building for the real world [9].

To adapt to the constraints of the real world, it is important
to consider agent speed and traversal time. The study done
by [17] used the standard A* algorithm to pathfind through
voxel-based environments, failing to consider the factor of
agent speed. Thus, we include a random speed component
on every voxel in the environments used to simulate various
speed restrictions in the real world. Under these conditions, we
raise the question: how can graph-based pathfinding algorithms
perform in a 3D voxel-based virtual environment where speed
is randomly determined? This study develops a heuristic to
find the path that minimizes time and distance, examining
node-based algorithms, A* and Dijkstra’s, in voxel-based en-
vironments, determining the navigational capabilities of such
models in a closed testing environment, and comparing them
against two adaptations considering speed and traversal time.

III. PROBLEM FORMULATION

The environment for this research uses 3D voxel space to
represent a 3D environment on which an agent will traverse.
The agent may only traverse this space given certain con-
straints, such as speed and terrain height. In this space, each
surface voxel is provided an x, y, and z coordinate where
the x, y coordinates represent horizontal movement and the z
coordinate represents terrain height and vertical movement.
Traversing upwards will slow the speed of the agent and
traversing downwards will increase the speed of the agent.
A. Environment

Given a graph G = (V,E) where there are n nodes and
m edges, and V = {v0, . . . , vn | v ∈ R3} is the nodes
representing the center of each voxel, where vn =

[ x
y
z

]
∀ n

and E = {e0, . . . , en}. Each node vn has an associated
randomly determined speed returned by the function s(n)
where n is a given node, which randomly varies from 0.5
to 3.0 voxels per millisecond. The range [0.5, 3.0] voxels per
millisecond is proposed as a starting point, representing an
estimated range of speed limits under different conditions.
However, these values can be tuned and validated through
experimental testing to ensure they reflect realistic speed
distributions. Each node will be represented by a voxel in 3D
space, where each voxel maintains the same size. As such the
edges connecting these nodes, connecting the center of two
adjacent voxels that share the same face, represent the distance
to traverse between nodes. When traversing across nodes of
different heights, gravity is considered by adjusting the speed.
The gravity function s(n) × ∆z

Γ is added to s(n). Here,



∆z represents the height difference and Γ was an arbitrarily
chosen parameter representing the influence of gravity, which
was 10 for this study. This parameter can be tuned to simulate
different gravitational impacts due to the variation in real-
world environments, forcing our solution to adapt to varying
conditions, and making it more robust.
B. Objectives

Given a starting node vs and a goal node vg in a 3D voxel
environment, we wish to compute the optimal path P from vs
to vg , minimizing both the path length |P | and the overall
traversal time represented by the cost function C(P ), i.e.,
min |P | and minC(P ). The cost function is calculated as:

C(P ) =

n∑
i=1

(
s(i) +

(
s(i) ∗ ∆z

Γ

))
∗ d(i), (2)

where d(i) represents the Euclidean distance function, taking
the distance between i and i− 1.
C. Constraints

We aim to achieve the above objectives under the following
constraints: traversal may occur in 3 dimensions octally via
adjacent nodes, but the agent cannot traverse between nodes
if the difference in their z coordinates (∆z) is greater than 2.
This represents a difference in height too steep for any real-
world agent to traverse. A path P ⊂ V from vs to vg must
represent an open walk in the graph, meaning that vs ̸= vg .
Also, |P | ≤ |V |.

TABLE I
MATHEMATICAL NOTATIONS USED IN THE PROBLEM FORMULATION

Notation Description
G = (V,E) Graph with node set V and edge set E

n Number of nodes
m Number of edges

vn =

x
y
z

 Coordinates of node n

s(n) Speed associated with node n, varying from 0.5
to 3.0 voxels per millisecond

d(n) Euclidean distance between two nodes, n
and n − 1, represented by the equation,√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

∆z Difference in z coordinates between two adjacent
nodes, i and i− 1

Γ Constant representing the effect of gravity on
traversal.

P Path from vs (starting node) to vg (goal node)
C(P ) Cost function representing the total traversal time

IV. METHODOLOGY

To gauge the effectiveness of the algorithms in our study,
their performance must be measured by the time taken to
reach the goal node. This can be accomplished in a com-
puter simulation. In experimental research design, we aim to
investigate cause-and-effect relationships and must consider
many factors that may influence a particular phenomenon.
An example would be comparing a computer vision-based
pathfinding algorithm against an A* benchmark.
A. Our Approach

We propose to develop a heuristic function to optimize
traversal time in which the time-varying speed is estimated

by taking the average speed between an adjacent node and the
current node (the “edge traversal time”) and the average speed
between the current node and the goal node (the “heuristic
traversal time”). We also consider the change in elevation
between two nodes in each speed calculation. We consider
four algorithms in this study: Dijkstra’s algorithm, due to its
primary influence in the pathfinding field, A*, due to its use of
heuristics when finding a path, along with two algorithms that
adapt each A* and Dijkstra to consider time. These algorithms
are tested and evaluated via computer simulations, which can
quickly run multiple pathfinding scenarios in short periods.
During these, the environment is randomly varied across each
trial to draw statistically meaningful conclusions about the
performance.
B. Time*

In our solution, referred to as Time* (“Time-Star”), we
expand upon the A* heuristic function by including speed
estimation in cost calculations. Our new cost function takes
into consideration the edge traversal time and the heuristic
traversal time to the goal node. For a given node n the cost
function c(n) is represented as:

c(n) = c(n-1) + t(n-1, n) + h(n-1, n) (3)

where n-1 is the previous node in the path, t(n-1, n) is the edge
traversal time, and h(n-1, n) is the heuristic traversal time to
the goal node. These functions are represented respectively as:

t(n1, n2) =
d(n1, n2)

e(n1, n2)
(4)

h(n1, n2) =
d(n2, ngoal)

e(n1, n2)
(5)

where d is the Euclidean distance between two nodes and
e is the speed of traversal between two given nodes. These
functions are represented respectively as follows:

d(n1, n2) =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (6)

e(n1, n2) =
u(n1) + u(n2)

2
, (7)

where u(n) is a function to estimate the randomly determined
speed, represented as:

u(n) = s(n) +

(
s(n) ∗ ∆z

Γ

)
, (8)

where s(n) is the randomly determined speed of the given
node n, and ∆z is that node’s elevation change, calculated
by taking the difference between each node’s z coordinate.
By modifying the A* heuristic function to accommodate the
random speeds, the standard A* procedures are used to find a
path from start to finish.
1) Theoretical Analysis

The time complexity of our Time* algorithm is primar-
ily governed by the characteristics of A*. A* has a time
complexity of O(bd), where b is the branching factor and
d is the depth of the search space. While the integration of



the heuristic function that accounts for time-varying speed
and elevation introduces additional computational overhead, it
does not fundamentally alter the worst-case time complexity.
The heuristic’s role is to guide the search more efficiently,
potentially reducing the number of nodes expanded, but the
exponential nature of the complexity remains.

Looking at the space complexity of Time*, it is consistent
with A*. Typically this is O(|V |), where |V | is the number of
nodes, accounting for the storage of node information such as
costs and parent nodes. The heuristic function, which includes
additional parameters like speed and elevation, necessitates
storing extra data for each node. However, this increase is
minimal compared to the overall space requirements, main-
taining a space complexity of O(|V |).

Overall, the heuristic design in Time* is crafted to mini-
mize traversal time by considering both speed and elevation
changes. This adaptation optimizes the algorithm’s perfor-
mance by steering the search towards paths that, while not
necessarily the shortest in distance, are likely to result in
faster traversal times. By incorporating terrain elevation into
the speed calculations, Time* dynamically adjusts to varying
environments, enhancing its ability to find time-efficient paths
in complex, uneven landscapes.
2) Procedures

The algorithm consists of two procedures, ”Find Path” and
”Get Best Neighbor.” ”Find Path” consists of an overall search
loop, which relies on ”Get Best Neighbor” to calculate the
optimal node based on the constraints and cost function of the
algorithm. ”Get Best Neighbor” searches all adjacent nodes
and uses the cost function as described to find the best node.
”Find Path” compiles these nodes into an array, which is
returned as the computed path.
C. Dijkstra-Time

A more iterative approach is used for the Dijkstra-based
algorithm, called Dijkstra-Time, where there is no heuristic
function, instead identifying the best path via edge traversal
time t(n-1, n). Unlike Dijkstra’s algorithm, which uses edge
weights, Dijkstra-Time focuses on edge traversal time, calcu-
lating distance iteratively and factoring it in place of a heuristic
function. As it explores the graph, it updates the tentative
distance for each node based on the traversal time. Since this
algorithm factors in the traversal time when determining the
shortest path, it ensures that the chosen path minimizes the
traversal time. The following is the pseudocode used for this
adaptation.
1) Theoretical Analysis

Dijkstra’s algorithm, known for its exhaustive search, has
a time complexity of O(|E| + |V | log |V |), where |E| is the
number of edges and |V | is the number of vertices. In the
Dijkstra-Time variant, the time-varying speed and elevation
adjustments add computational steps, but these additions do
not alter the overall time complexity. The algorithm’s nature
of exploring all possible paths to find the shortest path ensures
that this complexity remains consistent, even with additional
considerations.

Algorithm 1 Find Path Time*

1: procedure FINDPATH(Start, End, size, graph)
2: Path← [] ▷ Initialize an empty path
3: OpenList← graph ▷ Initialize OpenList with graph nodes
4: CurrNode← Start ▷ Start with the starting node
5: Path.append(Start.Pos) ▷ Add starting position to path
6: lastPoint← Path[Path.Num− 1]
7: PrevNode← OpenList[lastPoint]
8: while OpenList is not empty do
9: BestNode←

GETBESTNEIGHBOR(CurrNode, size, OpenList)
10: if BestNode ̸= nullptr then
11: OpenList.remove(BestNode.Pos)
12: if BestNode.Pos == End.Pos then
13: Path.append(End.Pos) ▷ Add end position to path
14: break ▷ Path found, exit loop
15: PrevNode← CurrNode
16: Path.append(BestNode.Pos) ▷ Add best node position to path
17: CurrNode← BestNode ▷ Update selected node
18: else
19: if CurrNode is not an edge node then
20: currPoint← CurrNode.Pos
21: OpenList.add(PrevNode.Pos)
22: Path.remove(PrevNode.Pos)
23: PossiblePaths← All possible nodes around currPoint
24: for i← 0 to PossiblePaths.Num do
25: point← PossiblePaths[i]
26: if (point ̸= currPoint) and point is not in Path then
27: if OpenList does not contain point then
28: OpenList.add(point, graph[point])
29: OpenList[point].hasV isited← false
30: CurrNode← PrevNode
31: PrevNode← graph[Path[Path.Num− 1]]
32: break ▷ Exit loop on failure
33: return Path ▷ Return the path

Algorithm 2 Get Best Neighbor Time*

1: procedure GETBESTNEIGHBOR(node, size, nodes)
2: MinX ← node.Pos.X
3: MaxX ← node.Pos.X + 1
4: MinY ← node.Pos.Y − 1
5: MaxY ← node.Pos.Y + 1
6: MaxZ ← node.Pos.Z + 2
7: BestNode← nullptr
8: if node.Pos.X < 0 or node.Pos.X ≥ size or

node.Pos.Y < 0 or node.Pos.Y ≥ size or
node.Pos.Z < 0 or node.Pos.Z ≥ size then

9: return NULL
10: for x←MinX to MaxX do
11: if x ≥ 0 then
12: for y ←MinY to MaxY do
13: if y ≥ 0 then
14: point← FV ector2D(x, y)
15: if point ̸= FV ector2D{node.Pos} then
16: if nodes.Contains(point) then
17: if nodes[point].Pos.Z ≤MaxZ and

not nodes[point].hasV isited then
18: nodes[point].cost ←

COST(node, nodes[point])
19: if BestNode == nullptr then
20: nodes[point].hasV isited← true
21: BestNode← nodes[point]
22: else if nodes[point].cost ≤ BestNode.cost

then
23: nodes[point].hasV isited← true
24: BestNode← nodes[point]
25: return BestNode ▷ Return the best node



Algorithm 3 Find Path Dijkstra-Time

1: procedure FINDPATH(Start, End, size, graph)
2: Path← [] ▷ Initialize an empty path
3: OpenList← graph ▷ Initialize OpenList with graph nodes
4: CurrNode← Start ▷ Start with the starting node
5: Path.append(Start.Pos) ▷ Add starting position to path
6: while OpenList is not empty do
7: BestNode←

GETBESTNEIGHBOR(CurrNode, size, OpenList)
8: if BestNode ̸= nullptr then
9: OpenList.remove(BestNode.Pos)

10: if BestNode.Pos == End.Pos then
11: Path.append(End.Pos) ▷ Add end position to path
12: break ▷ Path found, exit loop
13: Path.append(BestNode.Pos) ▷ Add best node position to path
14: CurrNode← BestNode ▷ Update selected node
15: else
16: if CurrNode is not an edge node then
17: currPoint← CurrNode.Pos
18: OpenList.add(PrevNode.Pos)
19: Path.remove(PrevNode.Pos)
20: PossiblePaths← All possible nodes around currPoint
21: for i← 0 to PossiblePaths.Num do
22: point← PossiblePaths[i]
23: if (point ̸= currPoint) and point is not in Path then
24: if OpenList does not contain point then
25: OpenList.add(point, graph[point])
26: OpenList[point].hasV isited← false
27: CurrNode← PrevNode
28: PrevNode← graph[Path[Path.Num− 1]]
29: break ▷ Exit loop on failure
30: return Path ▷ Return the path

In terms of space complexity, both Dijkstra and Dijkstra-
Time maintain O(|V |), which accounts for storing all node
and edge information. Similar to Time*, the inclusion of
speed and elevation data in Dijkstra-Time necessitates storing
additional information for each node. However, this increase
is minimal relative to the overall memory usage, keeping the
space complexity in line with the original Dijkstra’s algorithm.

Overall, Dijkstra-Time adapts Dijkstra’s exhaustive search
approach by integrating time-varying speeds and elevation
changes into cost calculation. This enhancement allows it to
evaluate the true cost of traversal in environments with varying
terrain. While Dijkstra is primarily focused on finding the
shortest path, Dijkstra-Time is optimized to consider both dis-
tance and traversal time, leading to more practical pathfinding
solutions in scenarios where time efficiency is critical.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Unreal Engine 5 Environment
For the voxel-based environment, we create a grid of nodes.

For consistency, traversal time is calculated by adding up the
individual speeds of the nodes involved in a given path, along
with the height difference factor, multiplied by the individual
edge distances for all algorithms. This grid is represented in
code as a map, where

[ x
y

]
is the key and each node is a

value. This map is used for analyzing the environment and
finding the most optimal path. Each node object contains a
vector containing position data,

[ x
y
z

]
, and a function to return

the randomly determined speed, s(n).
The environment is developed using Unreal Engine 5, one

of the most commonly used 3D game engines featuring

Algorithm 4 Get Best Neighbor Dijkstra-Time

1: procedure GETBESTNEIGHBOR(node, size, nodes)
2: MinX ← node.Pos.X
3: MaxX ← node.Pos.X + 1
4: MinY ← node.Pos.Y − 1
5: MaxY ← node.Pos.Y + 1
6: MaxZ ← node.Pos.Z + 2
7: BestNode← nullptr
8: if node.Pos.X < 0 or node.Pos.X ≥ size or

node.Pos.Y < 0 or node.Pos.Y ≥ size or
node.Pos.Z < 0 or node.Pos.Z ≥ size then

9: return NULL
10: for x←MinX to MaxX do
11: if x ≥ 0 then
12: for y ←MinY to MaxY do
13: if y ≥ 0 then
14: point← FV ector2D(x, y)
15: if point ̸= FV ector2D{node.Pos} then
16: if nodes.Contains(point) then
17: if nodes[point].Pos.Z ≤MaxZ and

not nodes[point].hasV isited then
18: nodes[point].cost ←

COST(node, nodes[point])
19: if BestNode == nullptr then
20: nodes[point].hasV isited← true
21: BestNode← nodes[point]
22: else if nodes[point].cost ≤ BestNode.cost

then
23: nodes[point].hasV isited← true
24: BestNode← nodes[point]
25: return BestNode ▷ Return the best node

procedural mesh generation, allowing for randomly generated
environments [21]. Unreal Engine 5, being a game engine, is
commonly used for creating video games, but its technologies
have been applied to other purposes, such as cinema and,
in the case of this study, simulation [7]. The environment
is generated randomly using the FastNoiseGenerator plug-
in, and a Perlin noise map. The Perlin noise map is a noise
function that generates natural gradients, making it useful for
realistic terrain generation [19]. This means that the generated
terrain is not truly random, instead simulating realistic terrain.

This study uses quintic interpolation to smoothen out noise
values to maintain realistic terrain. Both Euclidean and Man-
hattan distance functions are considered in cellular noise
calculations to create curved cell boundaries, but the Euclidean
distance function is selected as the distance is calculated
via two distinct points, finding the shortest and most direct
path [12]. The noise generator uses the following parameters
for all terrain generation instances: 0.15f for frequency, 5
octaves, 5.0f lacunarity, 0.5 gain, and 0.45f cellular jitter.
All tests are performed on an ASUS ROG Strix G15 2022
Gaming Laptop, using an AMD Ryzen 7 6800H processor,
NVIDIA GeForce RTX 3050 graphics card, and 16 gigabytes
of DDR5 RAM. Due to the extensive computational power
required to generate environments, the 512 and 1024 grid-size
environments are tested on an Amazon EC2 G4dn Extra Large
Windows instance, using an NVIDIA T4 GPU, 16 GB RAM,
and 4 vCPUs.

Due to the limited access to computational resources, we
generate each environment as a 16 × 16 × 16 voxel space. In
each trial, the agent is required to find a path from the bottom-



left corner to the top-right corner of this space, represented by
the coordinates

[
0
0

]
and

[
16
16

]
, respectively. Such trials are

repeated for 32 × 32 × 16, 36 × 36 × 16, 64 × 64 × 16,
250 × 250 × 16, 512 × 512 × 16, and 1024 × 1024 × 16
spaces. In total, 100 environments are generated per grid size,
and each algorithm makes one attempt to pathfind through
each environment. The standard environment height of 16 is
selected to complement the selection of the constant 2 as the
maximum height difference between nodes.

First, using Unreal Engine 5 and the FastNoiseGenerator
plug-in, the environment is generated at runtime, and each
algorithm computes a path across the terrain. The execution
time, traversal time, path length, and total path cost are all
measured and recorded in an Unreal Engine 5 DataTable, and
then exported to a Comma-Separated-Value (CSV) file.

For data analysis, Python was used with Pandas, Matplotlib,
and Seaborn. Pandas allows for CSV files to be read and
Matplotlib and Seaborn are used to generate graphs. The
CSV file–containing computational time, traversal time, path
length, and total path cost–exported from the Unreal Engine
5 DataTable is read into a Pandas Dataframe. Using Pandas,
we take each metric’s mean and standard deviation for each
algorithm and compare them. Such values are calculated for
each grid size and then plotted using Matplotlib and Seaborn
for ease of comparison. The algorithm that takes the least
amount of time on average to traverse is considered the most
effective algorithm. We also look into possible outliers in the
data to consider in our conclusions.

B. Results

The trial data are used to generate graphs that plot the
mean and standard deviation of the recorded metrics against
grid size. All algorithms tested are plotted in the same graph
for ease of comparison. The horizontal axis represents the
grid size, which is the number of voxels on each side of
the environment. The vertical axis represents the mean and
standard deviation of the recorded metrics: Time taken, time
calculated, path size, and total cost. For data analysis, outliers
are eliminated, which is data beyond the 95th percentile and
data below the 5th percentile. From the data, it is evident that
while the Time* algorithm takes more time to compute a path,
the individual paths generated optimize for time performance
better than any other algorithm tested. It is also clear that all
algorithms struggle to perform on a 1024 x 1024 grid size.

1) Execution Time

Fig. 2. Time taken by each algorithm

Fig. 2 shows the mean execution time taken by each
algorithm across different problem sizes. Regarding execution
time, Time* takes longer to compute a path than A* but
performs better than Dijkstra and Dijkstra-Time. On the other
hand, the standard deviation for Time* is generally lower than
both Dijkstra algorithms. This could have occurred due to
Time*’s additional speed considerations and that A* uses an
optimized heuristic to compute a path. A* has the shortest
execution time, due to its optimized heuristic function.

2) Traversal Time

Fig. 3. Time to traverse taken by each algorithm on each environment scale.

Fig. 3 shows the mean traversal time by each algorithm
across different problem sizes. In terms of traversal time,
Time* proves to be more effective than any of the other
algorithms tested. Time* consistently achieves the lowest
mean traversal time through the different environment scales,
proving that our heuristic function with speed consideration
effectively optimizes paths for traversal time. A* is close
behind Time*, with the Dijkstra-based algorithms following
suit. Interestingly, the Dijkstra-Time algorithm performs worse
than the original Dijkstra’s algorithm in all of the other metrics
tested, while optimizing the traversal time of the path much
better. This could be attributed to the additional computational
cost of considering the randomly determined speed in the
environment, resulting in longer computation times and longer
paths.

3) Path Size

Fig. 4. Number of nodes traversed by each environment and algorithm.

Fig. 4 shows the mean path size by each algorithm across
different problem sizes. Regarding path size, Time* does not
have the shortest path, which is accomplished by A*, but this is
likely due to the additional speed consideration, causing a path
that is not necessarily the shortest in distance, but the quickest
to traverse. The Dijkstra-based algorithms both consistently
end up in the last place across all of the metrics measured,



likely due to their non-optimized cost function. Dijkstra-
Time also has the greatest standard deviation, showing the
lack of scalability throughout the various environments and
different scales of environments. This further exemplifies the
effectiveness of A*-based solutions compared to Dijkstra-
based solutions.
4) Traversal Cost

Fig. 5. Costs of each algorithm on each environment scale.

Fig. 5 shows the mean traversal cost by each algorithm
across different problem sizes. When looking at path cost,
it is difficult to fairly compare the Dijkstra-based and A*-
based algorithms against each other as both types of algorithms
calculate cost differently. Understanding this limitation, we can
conclude based on the data that the speed considerations added
onto these algorithms allow for decreased path cost, indicating
that the resulting paths successfully optimize all of their goal
metrics, which for this study are distance and time, with a
greater focus on time.
C. Analysis

From the data collected, it is clear that Time* can accom-
plish its goal of finding the quickest path between two points.
There needs further analysis specifically for grid sizes greater
than 500 as from the data all algorithms seem to perform worse
on those environment scales. These environments will need to
be tested on much larger scales, such as 1500 x 1500.

VI. DISCUSSION

In the experiments, we investigate the performance metrics
of various algorithms on different grid sizes. Our trial data
allows for the generation of graphs illustrating the mean and
standard deviation of recorded metrics, including computa-
tional time, traversal time, total path cost, and path size.
Conveniently, all algorithms are plotted on the same graph
for ease of comparison. From the 700 simulations conducted,
it is clear that Time* performs much better than its parent
algorithm, A*. It also performs much better than Dijkstra’s
algorithm and better than Dijkstra-Time. It is also clear that
our heuristic function effectively optimizes for traversal time,
compared with other algorithms, allowing it to perform far
more effectively.
A. Execution Time

The Time* algorithm exhibits longer execution times com-
pared with the actual A* algorithm. This is indicative of the
additional time complexity required to handle the random
speed component of the environment at hand. Both Dijkstra-
Time and Dijkstra’s algorithm have much longer execution

times. This is likely due to Dijkstra’s lack of a heuristic
function to optimize paths, leading to additional computation
to find a path. The Time* algorithm does, however, have a
lower traversal time than all of the other algorithms.
B. Traversal Time

The area that Time* is the strongest in is traversal time. This
metric indicates that sacrificing some computational speed
can result in more effective outcomes. A*, which has a
faster execution time, could not compute an efficient path
and Dijkstra’s algorithm could not come close to either A* or
Time*. This suggests that heuristic functions can provide sig-
nificant advantages in execution speed while staying efficient.
Interestingly, Dijkstra-Time comes in second, with traversal
time better than the original A* algorithm, indicating that
while the algorithm may not be computationally efficient, it
can compute efficient paths.
C. Path Size

Looking at the path size, A* is consistently able to optimize
for the shortest path, which is consistent with its execution
time performance. Comparatively, Time* has a longer path size
but, consistent with other metrics, can build a more efficient
path than all other algorithms, as indicated by its ability to
optimize traversal time. Understandably, the shortest path by
distance is not the quickest to traverse. Interestingly, the time-
based Dijkstra algorithm has the longest sizes even though
it could not develop the most efficient path, likely due to
the lack of a heuristic function. This infers that in 3D voxel
spaces, A* and its derivatives may be the most computationally
effective, but if we consider the random speed component of
our environment, both Time* and Dijkstra-Time can compute
efficient paths. Again, likely due to the heuristic function,
Time* can compute paths in less time than Dijkstra-Time.
D. Standard Deviation

Across all metrics, Time* can effectively minimize the
standard deviation better than A* and both Dijkstra-based
algorithms. This indicates that Time* can maintain consistent
performance across trials as opposed to the other algorithms
tested. This may be because the calculations involving the
Time* cost function went far more in-depth, considering
the height differences and average speeds between nodes,
resulting in numerous factors holding the calculations into
place. Given so many factors influencing the algorithmic
performance, small changes to any given factor would not
result in significant variance from the mean, indicating a low
standard deviation. Another interesting note about the data
is that the standard deviation seems to increase as grid size
increases, indicating that the types of effective paths vary more
significantly at greater sizes.
E. Implications

From the results of this study, it is clear that there are appli-
cations for speed-based pathfinding algorithms that optimize
for time and distance. Previous studies have focused primarily
on distance-based path optimization without significant con-
sideration for time. In practical applications, such as video
games [17], speed plays an important role in determining the



feasibility of a given path. This study has also shown the effec-
tiveness of heuristic algorithms, specifically the A* algorithm,
in 3D voxel spaces, indicating that further research into such
algorithms would prove beneficial. Currently, further research
is expanding such algorithms into the field of autonomous
vehicles, where the A* algorithm acts as a base for more
complex algorithms [20]. Such applications would still benefit
from speed compensation algorithms, like the one presented in
this study. Ideally, future studies should emphasize optimizing
other algorithms with speed compensation in situations where
speed may vary significantly, requiring an additional consid-
eration of speed to find a path that can efficiently traverse a
given environment.

VII. CONCLUSION

We have shown the pathfinding capabilities of four algo-
rithms, A*, Dijkstra, Time*, and Dijkstra-Time. These algo-
rithms were tested in a 3D voxel-based environment, in which
speed was randomly determined. Each node in this environ-
ment would have a random speed associated with it, which
was assigned during terrain generation. This information was
used by the four algorithms to calculate the most efficient path
as determined by their cost functions. We primarily evaluated
the efficiency of their resulting paths by measuring the time it
took to traverse them.

From our trials, it became apparent that Time* proved
most effective in terms of optimizing traversal time, while
sacrificing computational speed and path length. We have
also been able to show the effectiveness of heuristic-based
algorithms, such as A* and Time*, in 3D voxel-based envi-
ronments. As such, we hope that future research will expand
the use of time-based heuristics, as seen in Time*, into other
research areas, such as autonomous vehicles. Beyond this, the
importance of heuristics in pathfinding should be explored in
combination with newer technologies such as deep learning
and neural networks. Research in this specific area can amplify
pathfinding success by using deep learning to analyze various
possible paths [18] or by using imitation learning to simplify
computations [14]. Further research can also explore the im-
portance of speed and traversal time as metrics for evaluation
in the overall field of pathfinding and also explore other
representations of real-world environments beyond just voxel-
based ones. Other aspects for future investigation include the
speed range and gravity function selected in the study, which
should be tuned and analyzed in comparison with the real
world to find optimal values.
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